60.3.432 problem 1438
Internal
problem
ID
[11442]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1438
Date
solved
:
Tuesday, January 28, 2025 at 06:06:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} y^{\prime \prime }&=-\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \end{align*}
✓ Solution by Maple
Time used: 0.686 (sec). Leaf size: 98
dsolve(diff(diff(y(x),x),x) = -(-a*cos(x)^2*sin(x)^2-m*(m-1)*sin(x)^2-n*(n-1)*cos(x)^2)/cos(x)^2/sin(x)^2*y(x),y(x), singsol=all)
\[
y = \sin \left (x \right )^{n} \left (c_{1} \cos \left (x \right )^{m} \operatorname {hypergeom}\left (\left [\frac {n}{2}+\frac {m}{2}+\frac {i \sqrt {a}}{2}, \frac {n}{2}+\frac {m}{2}-\frac {i \sqrt {a}}{2}\right ], \left [\frac {1}{2}+m \right ], \cos \left (x \right )^{2}\right )+c_{2} \cos \left (x \right )^{-m +1} \operatorname {hypergeom}\left (\left [\frac {n}{2}-\frac {m}{2}+\frac {i \sqrt {a}}{2}+\frac {1}{2}, \frac {n}{2}-\frac {m}{2}-\frac {i \sqrt {a}}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}-m \right ], \cos \left (x \right )^{2}\right )\right )
\]
✓ Solution by Mathematica
Time used: 1.482 (sec). Leaf size: 158
DSolve[D[y[x],{x,2}] == -(Csc[x]^2*Sec[x]^2*((1 - n)*n*Cos[x]^2 - (-1 + m)*m*Sin[x]^2 - a*Cos[x]^2*Sin[x]^2)*y[x]),y[x],x,IncludeSingularSolutions -> True]
\[
y(x)\to \frac {(-1)^{-m} \cos ^2(x)^{-\frac {m}{2}-\frac {1}{4}} \left (-\sin ^2(x)\right )^{n/2} \left (c_1 (-1)^m \cos ^2(x)^{m+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (m+n-\sqrt {-a}\right ),\frac {1}{2} \left (m+n+\sqrt {-a}\right ),m+\frac {1}{2},\cos ^2(x)\right )+i c_2 \cos ^2(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2} \left (-m+n-\sqrt {-a}+1\right ),\frac {1}{2} \left (-m+n+\sqrt {-a}+1\right ),\frac {3}{2}-m,\cos ^2(x)\right )\right )}{\sqrt {\cos (x)}}
\]