60.3.435 problem 1441

Internal problem ID [11445]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1441
Date solved : Monday, January 27, 2025 at 11:22:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=\frac {2 \,\operatorname {JacobiSN}\left (x , k\right ) \operatorname {JacobiCN}\left (x , k\right ) \operatorname {JacobiDN}\left (x , k\right ) y^{\prime }-2 \left (1-2 \left (k^{2}+1\right ) \operatorname {JacobiSN}\left (a , k\right )^{2}+3 k^{2} \operatorname {JacobiSN}\left (a , k\right )^{4}\right ) y}{\operatorname {JacobiSN}\left (x , k\right )^{2}-\operatorname {JacobiSN}\left (a , k\right )} \end{align*}

Solution by Maple

dsolve(diff(diff(y(x),x),x) = (2*JacobiSN(x,k)*JacobiCN(x,k)*JacobiDN(x,k)*diff(y(x),x)-2*(1-2*(k^2+1)*JacobiSN(a,k)^2+3*k^2*JacobiSN(a,k)^4)*y(x))/(JacobiSN(x,k)^2-JacobiSN(a,k)),y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[D[y[x],{x,2}] == -(-JacobiSN[a, k]^2 + JacobiSN[x, k]^2)^(-1) - ((2 - 4*(1 + k^2)*JacobiSN[a, k]^2 + 6*k^2*JacobiSN[a, k]^4)*y[x])/(-JacobiSN[a, k]^2 + JacobiSN[x, k]^2) - ((-(JacobiCN[x, k]*JacobiDN[x, k]) - 2*JacobiSN[x, k])*D[y[x],x])/(-JacobiSN[a, k]^2 + JacobiSN[x, k]^2),y[x],x,IncludeSingularSolutions -> True]
 

Not solved