60.3.96 problem 1110

Internal problem ID [11092]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1110
Date solved : Thursday, March 13, 2025 at 08:24:12 PM
CAS classification : [_Laguerre]

\begin{align*} x y^{\prime \prime }-x y^{\prime }-a y&=0 \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 23
ode:=x*diff(diff(y(x),x),x)-x*diff(y(x),x)-a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (\operatorname {KummerM}\left (a +1, 2, x\right ) c_{1} +\operatorname {KummerU}\left (a +1, 2, x\right ) c_{2} \right ) \]
Mathematica. Time used: 0.169 (sec). Leaf size: 36
ode=-(a*y[x]) - x*D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 G_{1,2}^{2,0}\left (-x\left | \begin {array}{c} 1-a \\ 0,1 \\ \end {array} \right .\right )+c_1 x \operatorname {Hypergeometric1F1}(a+1,2,x) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*y(x) - x*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False