60.4.28 problem 1476

Internal problem ID [11479]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1476
Date solved : Monday, January 27, 2025 at 11:22:32 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} 27 y^{\prime \prime \prime }-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y^{\prime }-2 n \left (n +3\right ) \left (4 n -3\right ) \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) y&=0 \end{align*}

Solution by Maple

dsolve(27*diff(diff(diff(y(x),x),x),x)-36*n^2*WeierstrassP(x,g2,g3)*diff(y(x),x)-2*n*(n+3)*(4*n-3)*WeierstrassPPrime(x,g2,g3)*y(x)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[-2*n*(3 + n)*(-3 + 4*n)*y[x]*Derivative[1][phi][x] - 36*n^2*WeierstrassP[x, {g2, g3}]*D[y[x],x] + 27*Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved