Internal
problem
ID
[11107]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1125
Date
solved
:
Wednesday, March 05, 2025 at 01:42:21 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x*diff(diff(y(x),x),x)+(4*x^2-1)*diff(y(x),x)-4*x^3*y(x)-4*x^5 = 0; dsolve(ode,y(x), singsol=all);
ode=-4*x^5 - 4*x^3*y[x] + (-1 + 4*x^2)*D[y[x],x] + x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**5 - 4*x**3*y(x) + x*Derivative(y(x), (x, 2)) + (4*x**2 - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(4*x**4 + 4*x**2*y(x) - Derivative(y(x), (x, 2)))/(4*x**2 - 1) + Derivative(y(x), x) cannot be solved by the factorable group method