Internal
problem
ID
[11111]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1129
Date
solved
:
Wednesday, March 05, 2025 at 01:42:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x-3)*diff(diff(y(x),x),x)-(4*x-9)*diff(y(x),x)+(3*x-6)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-6 + 3*x)*y[x] - (-9 + 4*x)*D[y[x],x] + (-3 + x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 3)*Derivative(y(x), (x, 2)) + (3*x - 6)*y(x) - (4*x - 9)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False