60.3.134 problem 1148

Internal problem ID [11130]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1148
Date solved : Wednesday, March 05, 2025 at 01:43:03 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+a y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 35
ode:=x^2*diff(diff(y(x),x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (c_{1} x^{\frac {\sqrt {-4 a +1}}{2}}+c_{2} x^{-\frac {\sqrt {-4 a +1}}{2}}\right ) \]
Mathematica. Time used: 0.034 (sec). Leaf size: 42
ode=a*y[x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^{\frac {1}{2}-\frac {1}{2} \sqrt {1-4 a}} \left (c_2 x^{\sqrt {1-4 a}}+c_1\right ) \]
Sympy. Time used: 0.454 (sec). Leaf size: 267
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*y(x) + x**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{- \frac {\sqrt [4]{\left (4 \operatorname {re}{\left (a\right )} - 1\right )^{2} + 16 \left (\operatorname {im}{\left (a\right )}\right )^{2}} \cos {\left (\frac {\operatorname {atan}_{2}{\left (- 4 \operatorname {im}{\left (a\right )},1 - 4 \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}{2} + \frac {1}{2}} \left (C_{1} \sin {\left (\frac {\sqrt [4]{\left (4 \operatorname {re}{\left (a\right )} - 1\right )^{2} + 16 \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \left |{\sin {\left (\frac {\operatorname {atan}_{2}{\left (- 4 \operatorname {im}{\left (a\right )},1 - 4 \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}\right |}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt [4]{\left (4 \operatorname {re}{\left (a\right )} - 1\right )^{2} + 16 \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \sin {\left (\frac {\operatorname {atan}_{2}{\left (- 4 \operatorname {im}{\left (a\right )},1 - 4 \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}{2} \right )}\right ) + x^{\frac {\sqrt [4]{\left (4 \operatorname {re}{\left (a\right )} - 1\right )^{2} + 16 \left (\operatorname {im}{\left (a\right )}\right )^{2}} \cos {\left (\frac {\operatorname {atan}_{2}{\left (- 4 \operatorname {im}{\left (a\right )},1 - 4 \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}{2} + \frac {1}{2}} \left (C_{3} \sin {\left (\frac {\sqrt [4]{\left (4 \operatorname {re}{\left (a\right )} - 1\right )^{2} + 16 \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \left |{\sin {\left (\frac {\operatorname {atan}_{2}{\left (- 4 \operatorname {im}{\left (a\right )},1 - 4 \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}\right |}{2} \right )} + C_{4} \cos {\left (\frac {\sqrt [4]{\left (4 \operatorname {re}{\left (a\right )} - 1\right )^{2} + 16 \left (\operatorname {im}{\left (a\right )}\right )^{2}} \log {\left (x \right )} \sin {\left (\frac {\operatorname {atan}_{2}{\left (- 4 \operatorname {im}{\left (a\right )},1 - 4 \operatorname {re}{\left (a\right )} \right )}}{2} \right )}}{2} \right )}\right ) \]