60.3.154 problem 1168

Internal problem ID [11150]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1168
Date solved : Wednesday, March 05, 2025 at 01:43:40 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime }+2 x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 11
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} +\frac {c_{2}}{x} \]
Mathematica. Time used: 0.025 (sec). Leaf size: 15
ode=2*x*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\frac {c_1}{x} \]
Sympy. Time used: 0.131 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} \]