Internal
problem
ID
[11155]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1173
Date
solved
:
Thursday, March 13, 2025 at 08:24:51 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+2*(x+a)*diff(y(x),x)-b*(b-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1 - b)*b*y[x] + 2*(a + x)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-b*(b - 1)*y(x) + x**2*Derivative(y(x), (x, 2)) + (2*a + 2*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (b**2*y(x) - b*y(x) - x**2*Derivative(y(x), (x, 2)))/(2*(a + x)) cannot be solved by the factorable group method