60.5.30 problem 1565

Internal problem ID [11564]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 4, linear fourth order
Problem number : 1565
Date solved : Tuesday, January 28, 2025 at 06:06:53 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y&=0 \end{align*}

Solution by Maple

Time used: 0.026 (sec). Leaf size: 71

dsolve(x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+(4*x^4+(-rho^2-sigma^2+7)*x^2)*diff(diff(y(x),x),x)+(16*x^3+(-rho^2-sigma^2+1)*x)*diff(y(x),x)+(rho^2*sigma^2+8*x^2)*y(x)=0,y(x), singsol=all)
 
\[ y = \left (c_{2} \operatorname {BesselY}\left (\frac {\rho }{2}-\frac {\sigma }{2}, x\right )+c_{1} \operatorname {BesselJ}\left (\frac {\rho }{2}-\frac {\sigma }{2}, x\right )\right ) \operatorname {BesselJ}\left (\frac {\rho }{2}+\frac {\sigma }{2}, x\right )+\operatorname {BesselY}\left (\frac {\rho }{2}+\frac {\sigma }{2}, x\right ) \left (\operatorname {BesselY}\left (\frac {\rho }{2}-\frac {\sigma }{2}, x\right ) c_4 +c_3 \operatorname {BesselJ}\left (\frac {\rho }{2}-\frac {\sigma }{2}, x\right )\right ) \]

Solution by Mathematica

Time used: 0.264 (sec). Leaf size: 242

DSolve[(rho^2*sigma^2 + 8*x^2)*y[x] + ((1 - rho^2 - sigma^2)*x + 16*x^3)*D[y[x],x] + ((7 - rho^2 - sigma^2)*x^2 + 4*x^4)*D[y[x],{x,2}] + 6*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 x^{-\rho } \, _2F_3\left (\frac {1}{2}-\frac {\rho }{2},1-\frac {\rho }{2};1-\rho ,-\frac {\rho }{2}-\frac {\sigma }{2}+1,-\frac {\rho }{2}+\frac {\sigma }{2}+1;-x^2\right )+c_3 x^{-\sigma } \, _2F_3\left (\frac {1}{2}-\frac {\sigma }{2},1-\frac {\sigma }{2};1-\sigma ,-\frac {\rho }{2}-\frac {\sigma }{2}+1,\frac {\rho }{2}-\frac {\sigma }{2}+1;-x^2\right )+c_4 x^{\sigma } \, _2F_3\left (\frac {\sigma }{2}+\frac {1}{2},\frac {\sigma }{2}+1;-\frac {\rho }{2}+\frac {\sigma }{2}+1,\frac {\rho }{2}+\frac {\sigma }{2}+1,\sigma +1;-x^2\right )+c_2 x^{\rho } \, _2F_3\left (\frac {\rho }{2}+\frac {1}{2},\frac {\rho }{2}+1;\rho +1,\frac {\rho }{2}-\frac {\sigma }{2}+1,\frac {\rho }{2}+\frac {\sigma }{2}+1;-x^2\right ) \]