7.7.16 problem 16

Internal problem ID [194]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Review problems at page 98
Problem number : 16
Date solved : Tuesday, March 04, 2025 at 10:59:58 AM
CAS classification : [[_homogeneous, `class C`], _Riccati]

\begin{align*} y^{\prime }&=x^{2}-2 x y+y^{2} \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 31
ode:=diff(y(x),x) = x^2-2*x*y(x)+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (1-x \right ) {\mathrm e}^{2 x}+\left (x +1\right ) c_1}{-{\mathrm e}^{2 x}+c_1} \]
Mathematica. Time used: 0.144 (sec). Leaf size: 29
ode=D[y[x],x]==x^2-2*x*y[x]+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x+\frac {1}{\frac {1}{2}+c_1 e^{2 x}}-1 \\ y(x)\to x-1 \\ \end{align*}
Sympy. Time used: 0.240 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + 2*x*y(x) - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x + C_{1} - x e^{2 x} + e^{2 x}}{C_{1} - e^{2 x}} \]