60.6.10 problem 1587

Internal problem ID [11586]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 5, linear fifth and higher order
Problem number : 1587
Date solved : Tuesday, January 28, 2025 at 06:06:57 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }-a y&=0 \end{align*}

Solution by Maple

Time used: 0.036 (sec). Leaf size: 164

dsolve(x^2*diff(y(x),x$4)-a*y(x)=0,y(x), singsol=all)
 
\[ y = -\frac {\left (\left (-\operatorname {BesselY}\left (1, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_4 -\operatorname {BesselJ}\left (1, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_3 \right ) a^{{1}/{4}}-\sqrt {-\sqrt {a}}\, \left (\operatorname {BesselY}\left (1, 2 a^{{1}/{4}} \sqrt {x}\right ) c_{2} +\operatorname {BesselJ}\left (1, 2 a^{{1}/{4}} \sqrt {x}\right ) c_{1} \right )\right ) \sqrt {x}+\left (\operatorname {BesselJ}\left (0, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_3 +\operatorname {BesselY}\left (0, 2 a^{{1}/{4}} \sqrt {x}\right ) c_{2} +\operatorname {BesselJ}\left (0, 2 a^{{1}/{4}} \sqrt {x}\right ) c_{1} +\operatorname {BesselY}\left (0, 2 \sqrt {-\sqrt {a}}\, \sqrt {x}\right ) c_4 \right ) a^{{1}/{4}} x \sqrt {-\sqrt {a}}}{a^{{1}/{4}} \sqrt {-\sqrt {a}}} \]

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 121

DSolve[x^2*D[y[x],{x,4}]-a*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_4 G_{0,4}^{2,0}\left (\frac {a x^2}{16}| \begin {array}{c} 0,1,\frac {1}{2},\frac {3}{2} \\ \end {array} \right )+c_2 G_{0,4}^{2,0}\left (\frac {a x^2}{16}| \begin {array}{c} \frac {1}{2},\frac {3}{2},0,1 \\ \end {array} \right )+\frac {1}{64} \sqrt {a} x \left ((4 c_3-3 i c_1) \operatorname {BesselJ}\left (2,2 \sqrt [4]{a} \sqrt {x}\right )+(3 i c_1+4 c_3) \operatorname {BesselI}\left (2,2 \sqrt [4]{a} \sqrt {x}\right )\right ) \]