60.3.234 problem 1250

Internal problem ID [11230]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1250
Date solved : Wednesday, March 05, 2025 at 01:57:14 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 x y^{\prime }+12 y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 41
ode:=(-a^2+x^2)*diff(diff(y(x),x),x)+8*x*diff(y(x),x)+12*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 a^{2} c_{2} x +c_{2} x^{3}+a^{2} c_{1} +3 c_{1} x^{2}}{\left (a -x \right )^{3} \left (a +x \right )^{3}} \]
Mathematica. Time used: 0.412 (sec). Leaf size: 91
ode=12*y[x] + 8*x*D[y[x],x] + (-a^2 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\exp \left (\int _1^x-\frac {3 a+K[1]}{a^2-K[1]^2}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}-\frac {3 a+K[1]}{a^2-K[1]^2}dK[1]\right )dK[2]+c_1\right )}{\left (a^2-x^2\right )^2} \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(8*x*Derivative(y(x), x) + (-a**2 + x**2)*Derivative(y(x), (x, 2)) + 12*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False