60.7.25 problem 1615 (6.25)

Internal problem ID [11614]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1615 (6.25)
Date solved : Monday, January 27, 2025 at 11:25:00 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}}&=0 \end{align*}

Solution by Maple

dsolve(diff(diff(y(x),x),x)-(3*n+4)/n*diff(y(x),x)-2*(n+1)*(n+2)/n^2*y(x)*(y(x)^(n/(n+1))-1)=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[(-2*(1 + n)*(2 + n)*y[x]*(-1 + y[x]^(n/(1 + n))))/n^2 - ((4 + 3*n)*D[y[x],x])/n + D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved