Internal
problem
ID
[11263]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1283
Date
solved
:
Wednesday, March 05, 2025 at 02:04:47 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=4*x^2*diff(diff(y(x),x),x)+4*x^2*ln(x)*diff(y(x),x)+(x^2*ln(x)^2+2*x-8)*y(x)-4*x^2*(exp(x)/(x^x))^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=-4*x^2*Sqrt[E^x/x^x] + (-8 + 2*x + x^2*Log[x]^2)*y[x] + 4*x^2*Log[x]*D[y[x],x] + 4*x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**2*sqrt(exp(x)/x**x) + 4*x**2*log(x)*Derivative(y(x), x) + 4*x**2*Derivative(y(x), (x, 2)) + (x**2*log(x)**2 + 2*x - 8)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*x**2*(sqrt(exp(x)/x**x) - Derivative(y(x), (x, 2))) - x**2*y(x)*log(x)**2 - 2*x*y(x) + 8*y(x))/(4*x**2*log(x)) cannot be solved by the factorable group method