60.7.111 problem 1702 (book 6.111)

Internal problem ID [11700]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1702 (book 6.111)
Date solved : Monday, January 27, 2025 at 11:30:17 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime } y-{y^{\prime }}^{2}-1&=0 \end{align*}

Solution by Maple

Time used: 0.075 (sec). Leaf size: 55

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-1=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {c_{1} \left ({\mathrm e}^{\frac {x +c_{2}}{c_{1}}}+{\mathrm e}^{\frac {-x -c_{2}}{c_{1}}}\right )}{2} \\ y &= \frac {c_{1} \left ({\mathrm e}^{\frac {x +c_{2}}{c_{1}}}+{\mathrm e}^{\frac {-x -c_{2}}{c_{1}}}\right )}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.478 (sec). Leaf size: 464

DSolve[-1 - D[y[x],x]^2 + y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {1-\text {$\#$1}^2 e^{2 (-c_1)}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 (-c_1)}}\right )}{\sqrt {-e^{2 (-c_1)}} \sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {1-\text {$\#$1}^2 e^{2 (-c_1)}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 (-c_1)}}\right )}{\sqrt {-e^{2 (-c_1)}} \sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {\sqrt {1-\text {$\#$1}^2 e^{2 c_1}} \text {arcsinh}\left (\text {$\#$1} \sqrt {-e^{2 c_1}}\right )}{\sqrt {-e^{2 c_1}} \sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}}\&\right ][x+c_2] \\ \end{align*}