60.7.137 problem 1728 (book 6.137)

Internal problem ID [11726]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1728 (book 6.137)
Date solved : Monday, January 27, 2025 at 11:31:53 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 2 y^{\prime \prime } y+{y^{\prime }}^{2}+1&=0 \end{align*}

Solution by Maple

Time used: 0.085 (sec). Leaf size: 327

dsolve(2*diff(diff(y(x),x),x)*y(x)+diff(y(x),x)^2+1=0,y(x), singsol=all)
 
\begin{align*} y &= \frac {\left (-\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right ) c_{1} +2 x +2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ y &= \frac {\left (-\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right ) c_{1} -2 x -2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ y &= \frac {\left (\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right ) c_{1} -2 x -2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ y &= \frac {\left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right ) c_{1} +2 x +2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 1.360 (sec). Leaf size: 516

DSolve[1 + D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {e^{3 (-c_1)} \sqrt {1-\text {$\#$1} e^{-2 (-c_1)}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-(-c_1)}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 (-c_1)}\right )}{\sqrt {-\text {$\#$1}+e^{2 (-c_1)}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {e^{3 (-c_1)} \sqrt {1-\text {$\#$1} e^{-2 (-c_1)}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-(-c_1)}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 (-c_1)}\right )}{\sqrt {-\text {$\#$1}+e^{2 (-c_1)}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {e^{3 c_1} \sqrt {1-\text {$\#$1} e^{-2 c_1}} \arcsin \left (\sqrt {\text {$\#$1}} e^{-c_1}\right )+\sqrt {\text {$\#$1}} \left (\text {$\#$1}-e^{2 c_1}\right )}{\sqrt {-\text {$\#$1}+e^{2 c_1}}}\&\right ][x+c_2] \\ \end{align*}