60.7.140 problem 1731 (book 6.140)

Internal problem ID [11729]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1731 (book 6.140)
Date solved : Monday, January 27, 2025 at 11:31:57 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime } y-{y^{\prime }}^{2}-8 y^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.082 (sec). Leaf size: 57

dsolve(2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-8*y(x)^3=0,y(x), singsol=all)
 
\begin{align*} y &= 0 \\ \int _{}^{y}\frac {1}{\sqrt {\textit {\_a} \left (4 \textit {\_a}^{2}+c_{1} \right )}}d \textit {\_a} -x -c_{2} &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {\textit {\_a} \left (4 \textit {\_a}^{2}+c_{1} \right )}}d \textit {\_a} -x -c_{2} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.979 (sec). Leaf size: 415

DSolve[-8*y[x]^3 - D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {-4 \text {$\#$1}^2}{-c_1}\right )}{\sqrt {4 \text {$\#$1}^2-c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\frac {-4 \text {$\#$1}^2}{-c_1}\right )}{\sqrt {4 \text {$\#$1}^2-c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {4 \text {$\#$1}^2}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {4 \text {$\#$1}^2}{c_1}\right )}{\sqrt {4 \text {$\#$1}^2+c_1}}\&\right ][x+c_2] \\ \end{align*}