60.7.146 problem 1737 (book 6.146)

Internal problem ID [11735]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1737 (book 6.146)
Date solved : Monday, January 27, 2025 at 11:32:07 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime } y-{y^{\prime }}^{2}-3 y^{4}&=0 \end{align*}

Solution by Maple

Time used: 0.082 (sec). Leaf size: 53

dsolve(2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-3*y(x)^4=0,y(x), singsol=all)
 
\begin{align*} y &= 0 \\ \int _{}^{y}\frac {1}{\sqrt {\textit {\_a} \left (\textit {\_a}^{3}+c_{1} \right )}}d \textit {\_a} -x -c_{2} &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {\textit {\_a} \left (\textit {\_a}^{3}+c_{1} \right )}}d \textit {\_a} -x -c_{2} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 8.782 (sec). Leaf size: 397

DSolve[-3*y[x]^4 - D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {\text {$\#$1}^3}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {\text {$\#$1}^3}{c_1}\right )}{\sqrt {\text {$\#$1}^3+c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {\text {$\#$1}^3}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {\text {$\#$1}^3}{c_1}\right )}{\sqrt {\text {$\#$1}^3+c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {-\text {$\#$1}^3}{-c_1}\right )}{\sqrt {\text {$\#$1}^3-c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1-\frac {\text {$\#$1}^3}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {-\text {$\#$1}^3}{-c_1}\right )}{\sqrt {\text {$\#$1}^3-c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {\text {$\#$1}^3}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {\text {$\#$1}^3}{c_1}\right )}{\sqrt {\text {$\#$1}^3+c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {\text {$\#$1}} \sqrt {1+\frac {\text {$\#$1}^3}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {\text {$\#$1}^3}{c_1}\right )}{\sqrt {\text {$\#$1}^3+c_1}}\&\right ][x+c_2] \\ \end{align*}