60.7.154 problem 1745 (book 6.154)

Internal problem ID [11743]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1745 (book 6.154)
Date solved : Monday, January 27, 2025 at 11:32:19 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 2 y^{\prime \prime } y-{y^{\prime }}^{2} \left ({y^{\prime }}^{2}+1\right )&=0 \end{align*}

Solution by Maple

Time used: 0.102 (sec). Leaf size: 331

dsolve(2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2*(diff(y(x),x)^2+1)=0,y(x), singsol=all)
 
\begin{align*} y &= 0 \\ y &= \frac {\left (\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right ) c_{1} -2 x -2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ y &= \frac {\left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right ) c_{1} +2 x +2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ y &= \frac {\left (-\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right ) c_{1} +2 x +2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right ) \left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} -2 c_{2} -2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ y &= \frac {\left (-\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right ) c_{1} -2 x -2 c_{2} \right ) \tan \left (\operatorname {RootOf}\left (\left (\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right ) \left (-\cos \left (\textit {\_Z} \right ) c_{1} +\textit {\_Z} c_{1} +2 c_{2} +2 x \right )\right )\right )}{2}+\frac {c_{1}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.307 (sec). Leaf size: 51

DSolve[-(D[y[x],x]^2*(1 + D[y[x],x]^2)) + 2*y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\frac {1}{\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (K[1]^2+1\right )}dK[1]\&\right ]\left [c_1+\frac {1}{2} \log (K[2])\right ]}dK[2]=x+c_2,y(x)\right ] \]