60.7.159 problem 1750 (book 6.159)

Internal problem ID [11748]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1750 (book 6.159)
Date solved : Monday, January 27, 2025 at 11:33:46 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime } y-3 {y^{\prime }}^{2}-12 y^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.108 (sec). Leaf size: 61

dsolve(4*diff(diff(y(x),x),x)*y(x)-3*diff(y(x),x)^2-12*y(x)^3=0,y(x), singsol=all)
 
\begin{align*} y &= 0 \\ \int _{}^{y}\frac {1}{\sqrt {\textit {\_a}^{{3}/{2}} \left (4 \textit {\_a}^{{3}/{2}}+c_{1} \right )}}d \textit {\_a} -x -c_{2} &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {\textit {\_a}^{{3}/{2}} \left (4 \textit {\_a}^{{3}/{2}}+c_{1} \right )}}d \textit {\_a} -x -c_{2} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.706 (sec). Leaf size: 469

DSolve[-12*y[x]^3 - 3*D[y[x],x]^2 + 4*y[x]*D[y[x],{x,2}] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {4 \text {$\#$1} \sqrt {1+\frac {4 \text {$\#$1}^{3/2}}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {4 \text {$\#$1}^{3/2}}{c_1}\right )}{\sqrt {\text {$\#$1}^{3/2} \left (4 \text {$\#$1}^{3/2}+c_1\right )}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {4 \text {$\#$1} \sqrt {1+\frac {4 \text {$\#$1}^{3/2}}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {4 \text {$\#$1}^{3/2}}{c_1}\right )}{\sqrt {\text {$\#$1}^{3/2} \left (4 \text {$\#$1}^{3/2}+c_1\right )}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {4 \text {$\#$1} \sqrt {1-\frac {4 \text {$\#$1}^{3/2}}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {-4 \text {$\#$1}^{3/2}}{-c_1}\right )}{\sqrt {\text {$\#$1}^{3/2} \left (4 \text {$\#$1}^{3/2}-c_1\right )}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {4 \text {$\#$1} \sqrt {1-\frac {4 \text {$\#$1}^{3/2}}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},\frac {-4 \text {$\#$1}^{3/2}}{-c_1}\right )}{\sqrt {\text {$\#$1}^{3/2} \left (4 \text {$\#$1}^{3/2}-c_1\right )}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {4 \text {$\#$1} \sqrt {1+\frac {4 \text {$\#$1}^{3/2}}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {4 \text {$\#$1}^{3/2}}{c_1}\right )}{\sqrt {\text {$\#$1}^{3/2} \left (4 \text {$\#$1}^{3/2}+c_1\right )}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {4 \text {$\#$1} \sqrt {1+\frac {4 \text {$\#$1}^{3/2}}{c_1}} \operatorname {Hypergeometric2F1}\left (\frac {1}{6},\frac {1}{2},\frac {7}{6},-\frac {4 \text {$\#$1}^{3/2}}{c_1}\right )}{\sqrt {\text {$\#$1}^{3/2} \left (4 \text {$\#$1}^{3/2}+c_1\right )}}\&\right ][x+c_2] \\ \end{align*}