60.3.386 problem 1403

Internal problem ID [11382]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1403
Date solved : Thursday, March 13, 2025 at 08:51:22 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \end{align*}

Maple. Time used: 1.009 (sec). Leaf size: 298
ode:=diff(diff(y(x),x),x) = -((1-a1-b1)/(x-c1)+(1-a2-b2)/(x-c2)+(1-a3-b3)/(x-c3))*diff(y(x),x)-1/(x-c1)/(x-c2)/(x-c3)*(a1*b1*(c1-c3)*(c1-c2)/(x-c1)+a2*b2*(c2-c1)*(c2-c3)/(x-c2)+a3*b3*(c3-c2)*(c3-c1)/(x-c3))*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 21.544 (sec). Leaf size: 293
ode=D[y[x],{x,2}] == -((((a1*b1*(c1 - c2)*(c1 - c3))/(-c1 + x) + (a2*b2*(-c1 + c2)*(c2 - c3))/(-c2 + x) + (a3*b3*(-c1 + c3)*(-c2 + c3))/(-c3 + x))*y[x])/((-c1 + x)*(-c2 + x)*(-c3 + x))) - ((1 - a1 - b1)/(-c1 + x) + (1 - a2 - b2)/(-c2 + x) + (1 - a3 - b3)/(-c3 + x))*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (x-\text {c2})^{\text {a2}} (x-\text {c3})^{\text {b3}} \left (c_1 (x-\text {c1})^{\text {a1}} \text {HeunG}\left [\frac {\text {c1}-\text {c3}}{\text {c1}-\text {c2}},\frac {\text {a1} (-(\text {c1} (\text {a3}+2 \text {b1}+\text {b2}-2))+\text {c2} (\text {a3}+\text {b1}-1)+\text {c3} (\text {b1}+\text {b2}-1))+\text {a2} (-\text {b1} \text {c1}+(\text {b1}-1) \text {c3}+\text {b2} (\text {c3}-\text {c2})+\text {c1})+\text {b3} (\text {c2} (\text {a3}+\text {b1}-1)-\text {a3} \text {c3}-\text {b1} \text {c1}+\text {c1})}{\text {c1}-\text {c2}},-\text {a3}-\text {b1}-\text {b2}+2,\text {a1}+\text {a2}+\text {b3},\text {a1}-\text {b1}+1,\text {a2}-\text {b2}+1,\frac {\text {c1}-x}{\text {c1}-\text {c2}}\right ]+c_2 (x-\text {c1})^{\text {b1}} \text {HeunG}\left [\frac {\text {c1}-\text {c3}}{\text {c1}-\text {c2}},\frac {\text {a2} (-\text {a1} \text {c1}+(\text {a1}-1) \text {c3}+\text {b2} (\text {c3}-\text {c2})+\text {c1})+\text {b1} (-(\text {c1} (2 \text {a1}+\text {a3}+\text {b2}-2))+\text {c2} (\text {a1}+\text {a3}-1)+\text {c3} (\text {a1}+\text {b2}-1))+\text {b3} (\text {c2} (\text {a1}+\text {a3}-1)-\text {a1} \text {c1}-\text {a3} \text {c3}+\text {c1})}{\text {c1}-\text {c2}},-\text {a1}-\text {a3}-\text {b2}+2,\text {a2}+\text {b1}+\text {b3},-\text {a1}+\text {b1}+1,\text {a2}-\text {b2}+1,\frac {\text {c1}-x}{\text {c1}-\text {c2}}\right ]\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a1 = symbols("a1") 
a2 = symbols("a2") 
a3 = symbols("a3") 
b1 = symbols("b1") 
b2 = symbols("b2") 
b3 = symbols("b3") 
c1 = symbols("c1") 
c2 = symbols("c2") 
c3 = symbols("c3") 
y = Function("y") 
ode = Eq(((-a3 - b3 + 1)/(-c3 + x) + (-a2 - b2 + 1)/(-c2 + x) + (-a1 - b1 + 1)/(-c1 + x))*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + (a1*b1*(c1 - c2)*(c1 - c3)/(-c1 + x) + a2*b2*(-c1 + c2)*(c2 - c3)/(-c2 + x) + a3*b3*(-c1 + c3)*(-c2 + c3)/(-c3 + x))*y(x)/((-c1 + x)*(-c2 + x)*(-c3 + x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out