7.8.3 problem 3

Internal problem ID [217]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.1 (Introduction. Second order linear equations). Problems at page 111
Problem number : 3
Date solved : Tuesday, March 04, 2025 at 11:04:59 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3\\ y^{\prime }\left (0\right )&=8 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+4*y(x) = 0; 
ic:=y(0) = 3, D(y)(0) = 8; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 4 \sin \left (2 x \right )+3 \cos \left (2 x \right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 18
ode=D[y[x],{x,2}]+4*y[x] == 0; 
ic={y[0]==3,Derivative[1][y][0] ==8}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 4 \sin (2 x)+3 \cos (2 x) \]
Sympy. Time used: 0.070 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): 8} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 4 \sin {\left (2 x \right )} + 3 \cos {\left (2 x \right )} \]