Internal
problem
ID
[11809]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1811
(book
6.220)
Date
solved
:
Monday, January 27, 2025 at 11:36:58 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
Time used: 0.138 (sec). Leaf size: 81
\begin{align*}
\frac {\left (-2 a \sqrt {y}-c_{1} \right ) \sqrt {4 a \sqrt {y}-c_{1}}-6 a^{2} \left (x +c_{2} \right )}{6 a^{2}} &= 0 \\
\frac {\left (2 a \sqrt {y}+c_{1} \right ) \sqrt {4 a \sqrt {y}-c_{1}}-6 a^{2} \left (x +c_{2} \right )}{6 a^{2}} &= 0 \\
\end{align*}
Time used: 60.116 (sec). Leaf size: 1881
\begin{align*}
y(x)\to \frac {288 a^4 c_1 x^2+576 a^4 c_1 c_2 x+288 a^4 c_1 c_2{}^2+a^4 \left (\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}\right ){}^{2/3}+3 a^2 c_1{}^2 \sqrt [3]{\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}}+c_1{}^4}{16 a^4 \sqrt [3]{\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}}} \\
y(x)\to \frac {-288 i \sqrt {3} a^4 c_1 x^2-288 a^4 c_1 x^2-576 i \sqrt {3} a^4 c_1 c_2 x-576 a^4 c_1 c_2 x-288 i \sqrt {3} a^4 c_1 c_2{}^2-288 a^4 c_1 c_2{}^2+i \sqrt {3} a^4 \left (\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}\right ){}^{2/3}-a^4 \left (\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}\right ){}^{2/3}+6 a^2 c_1{}^2 \sqrt [3]{\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}}-i \sqrt {3} c_1{}^4-c_1{}^4}{32 a^4 \sqrt [3]{\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}}} \\
y(x)\to \frac {288 i \sqrt {3} a^4 c_1 x^2-288 a^4 c_1 x^2+576 i \sqrt {3} a^4 c_1 c_2 x-576 a^4 c_1 c_2 x+288 i \sqrt {3} a^4 c_1 c_2{}^2-288 a^4 c_1 c_2{}^2-i \sqrt {3} a^4 \left (\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}\right ){}^{2/3}-a^4 \left (\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}\right ){}^{2/3}+6 a^2 c_1{}^2 \sqrt [3]{\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}}+i \sqrt {3} c_1{}^4-c_1{}^4}{32 a^4 \sqrt [3]{\frac {10368 a^8 x^4+41472 a^8 c_2 x^3+62208 a^8 c_2{}^2 x^2+41472 a^8 c_2{}^3 x+10368 a^8 c_2{}^4+720 a^4 c_1{}^3 x^2+1440 a^4 c_1{}^3 c_2 x+720 a^4 c_1{}^3 c_2{}^2+48 a^6 \sqrt {\frac {(x+c_2){}^2 \left (36 a^4 (x+c_2){}^2-c_1{}^3\right ){}^3}{a^8}}-c_1{}^6}{a^6}}} \\
\end{align*}