60.7.245 problem 1836 (book 6.245)

Internal problem ID [11834]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1836 (book 6.245)
Date solved : Monday, January 27, 2025 at 11:43:14 PM
CAS classification : unknown

\begin{align*} \left (2 y^{\prime \prime } y-{y^{\prime }}^{2}\right )^{3}+32 y^{\prime \prime } \left (x y^{\prime \prime }-y^{\prime }\right )^{3}&=0 \end{align*}

Solution by Maple

dsolve((2*diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2)^3+32*diff(diff(y(x),x),x)*(x*diff(diff(y(x),x),x)-diff(y(x),x))^3=0,y(x), singsol=all)
 
\[ \text {No solution found} \]

Solution by Mathematica

Time used: 51.010 (sec). Leaf size: 142

DSolve[32*D[y[x],{x,2}]*(-D[y[x],x] + x*D[y[x],{x,2}])^3 + (-D[y[x],x]^2 + 2*y[x]*D[y[x],{x,2}])^3 == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{4} \left (-\frac {8 c_1{}^3}{\sqrt [3]{3 \sqrt {3} \sqrt {c_1{}^9 c_2{}^9 (-64+27 c_1 c_2)}-27 c_1{}^5 c_2{}^5}}+\frac {c_1{}^2}{c_2}-\frac {2 \sqrt [3]{\sqrt {3} \sqrt {c_1{}^9 c_2{}^9 (-64+27 c_1 c_2)}-9 c_1{}^5 c_2{}^5}}{3^{2/3} c_2{}^3}\right ) x^2+c_1 x+c_2 \\ y(x)\to \text {Indeterminate} \\ y(x)\to c_2 \\ \end{align*}