60.8.1 problem 1837

Internal problem ID [11836]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 7, non-linear third and higher order
Problem number : 1837
Date solved : Monday, January 27, 2025 at 11:43:25 PM
CAS classification : [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\begin{align*} y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right )&=0 \end{align*}

Solution by Maple

Time used: 0.053 (sec). Leaf size: 105

dsolve(diff(diff(diff(y(x),x),x),x)-a^2*(diff(y(x),x)^5+2*diff(y(x),x)^3+diff(y(x),x))=0,y(x), singsol=all)
 
\begin{align*} y &= \int \operatorname {RootOf}\left (3 \left (\int _{}^{\textit {\_Z}}\frac {1}{\sqrt {3 \textit {\_f}^{6} a^{2}+9 a^{2} \textit {\_f}^{4}+9 \textit {\_f}^{2} a^{2}+3 a^{2}+9 c_{1}}}d \textit {\_f} \right )+x +c_{2} \right )d x +c_3 \\ y &= \int \operatorname {RootOf}\left (-3 \left (\int _{}^{\textit {\_Z}}\frac {1}{\sqrt {3 \textit {\_f}^{6} a^{2}+9 a^{2} \textit {\_f}^{4}+9 \textit {\_f}^{2} a^{2}+3 a^{2}+9 c_{1}}}d \textit {\_f} \right )+x +c_{2} \right )d x +c_3 \\ \end{align*}

Solution by Mathematica

Time used: 21.385 (sec). Leaf size: 442

DSolve[-(a^2*(D[y[x],x] + 2*D[y[x],x]^3 + D[y[x],x]^5)) + Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \int _1^x\text {InverseFunction}\left [-3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 c_1}}d\text {$\#$1}\&\right ][c_2-K[1]]dK[1]+c_3 \\ y(x)\to \int _1^x\text {InverseFunction}\left [3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 c_1}}d\text {$\#$1}\&\right ][c_2-K[2]]dK[2]+c_3 \\ y(x)\to \text {Indeterminate} \\ y(x)\to \int _1^x\text {InverseFunction}\left [-3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 (-1) c_1}}d\text {$\#$1}\&\right ][c_2-K[1]]dK[1]+c_3 \\ y(x)\to \int _1^x\text {InverseFunction}\left [3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 (-1) c_1}}d\text {$\#$1}\&\right ][c_2-K[2]]dK[2]+c_3 \\ y(x)\to \int _1^x\text {InverseFunction}\left [-3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 c_1}}d\text {$\#$1}\&\right ][c_2-K[1]]dK[1]+c_3 \\ y(x)\to \int _1^x\text {InverseFunction}\left [3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 c_1}}d\text {$\#$1}\&\right ][c_2-K[2]]dK[2]+c_3 \\ \end{align*}