7.24.4 problem 14

Internal problem ID [604]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.3 (Matrices and linear systems). Problems at page 364
Problem number : 14
Date solved : Tuesday, January 28, 2025 at 02:35:38 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=x t -{\mathrm e}^{t} y \left (t \right )+\cos \left (t \right )\\ y^{\prime }\left (t \right )&={\mathrm e}^{-t} x+t^{2} y \left (t \right )-\sin \left (t \right ) \end{align*}

Solution by Maple

Time used: 9.977 (sec). Leaf size: 3532

dsolve([diff(x(t),t)=t*x(t)-exp(t)*y(t)+cos(t),diff(y(t),t)=exp(-t)*x(t)+t^2*y(t)-sin(t)],singsol=all)
 
\begin{align*} \text {Expression too large to display} \\ \text {Expression too large to display} \\ \end{align*}

Solution by Mathematica

Time used: 0.000 (sec). Leaf size: 0

DSolve[{D[x[t],t]==t*x[t]-Exp[t]*y[t]+Cos[t],D[y[t],t]==Exp[-t]*x[t]+t^2*y[t]-Sin[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 

Timed out