60.8.13 problem 1849

Internal problem ID [11848]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 7, non-linear third and higher order
Problem number : 1849
Date solved : Monday, January 27, 2025 at 11:43:42 PM
CAS classification : [[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\begin{align*} y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1}&=0 \end{align*}

Solution by Maple

Time used: 0.259 (sec). Leaf size: 293

dsolve(diff(diff(y(x),x),x)*diff(diff(diff(y(x),x),x),x)-a*(b^2*diff(diff(y(x),x),x)^2+1)^(1/2)=0,y(x), singsol=all)
 
\begin{align*} y &= -\frac {i x^{2}}{2 b}+c_{1} x +c_{2} \\ y &= \frac {i x^{2}}{2 b}+c_{1} x +c_{2} \\ y &= -\frac {\int \left (-\sqrt {a^{2} b^{4}}\, \left (x +c_{1} \right ) \sqrt {\left (1+b^{2} \left (x +c_{1} \right ) a \right ) \left (-1+b^{2} \left (x +c_{1} \right ) a \right )}+\ln \left (\frac {a^{2} b^{4} \left (x +c_{1} \right )+\sqrt {\left (1+b^{2} \left (x +c_{1} \right ) a \right ) \left (-1+b^{2} \left (x +c_{1} \right ) a \right )}\, \sqrt {a^{2} b^{4}}}{\sqrt {a^{2} b^{4}}}\right )\right )d x -2 b \sqrt {a^{2} b^{4}}\, \left (c_{2} x +c_3 \right )}{2 \sqrt {a^{2} b^{4}}\, b} \\ y &= \frac {\int \left (-\sqrt {a^{2} b^{4}}\, \left (x +c_{1} \right ) \sqrt {\left (1+b^{2} \left (x +c_{1} \right ) a \right ) \left (-1+b^{2} \left (x +c_{1} \right ) a \right )}+\ln \left (\frac {a^{2} b^{4} \left (x +c_{1} \right )+\sqrt {\left (1+b^{2} \left (x +c_{1} \right ) a \right ) \left (-1+b^{2} \left (x +c_{1} \right ) a \right )}\, \sqrt {a^{2} b^{4}}}{\sqrt {a^{2} b^{4}}}\right )\right )d x +2 b \sqrt {a^{2} b^{4}}\, \left (c_{2} x +c_3 \right )}{2 \sqrt {a^{2} b^{4}}\, b} \\ \end{align*}

Solution by Mathematica

Time used: 60.533 (sec). Leaf size: 194

DSolve[-(a*Sqrt[1 + b^2*D[y[x],{x,2}]^2]) + D[y[x],{x,2}]*Derivative[3][y][x] == 0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \int _1^x\frac {\log \left (b^2 \left ((c_1+a K[1]) b^2+\sqrt {b^4 (c_1+a K[1]){}^2-1}\right )\right )-b^2 (c_1+a K[1]) \sqrt {b^4 (c_1+a K[1]){}^2-1}}{2 a b^3}dK[1]+c_3 x+c_2 \\ y(x)\to \int _1^x\frac {b^2 (c_1+a K[2]) \sqrt {b^4 (c_1+a K[2]){}^2-1}-\log \left (b^2 \left ((c_1+a K[2]) b^2+\sqrt {b^4 (c_1+a K[2]){}^2-1}\right )\right )}{2 a b^3}dK[2]+c_3 x+c_2 \\ \end{align*}