60.4.43 problem 1499

Internal problem ID [11466]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1499
Date solved : Thursday, March 13, 2025 at 08:53:18 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime \prime }-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y&=0 \end{align*}

Maple. Time used: 0.032 (sec). Leaf size: 25
ode:=x^2*diff(diff(diff(y(x),x),x),x)-(x^2-2*x)*diff(diff(y(x),x),x)-(x^2+nu^2-1/4)*diff(y(x),x)+(x^2-2*x+nu^2-1/4)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} c_{1} +c_{2} \sqrt {x}\, \operatorname {BesselI}\left (\nu , x\right )+c_3 \sqrt {x}\, \operatorname {BesselK}\left (\nu , x\right ) \]
Mathematica. Time used: 0.126 (sec). Leaf size: 118
ode=(-1/4 + nu^2 - 2*x + x^2)*y[x] - (-1/4 + nu^2 + x^2)*D[y[x],x] - (-2*x + x^2)*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x \left (c_2 \int _1^x\exp \left (\int _1^{K[2]}-\frac {-2 \nu +4 K[1]+1}{2 K[1]}dK[1]\right ) \operatorname {HypergeometricU}\left (\nu -\frac {1}{2},2 \nu +1,2 K[2]\right )dK[2]+c_3 \int _1^x\exp \left (\int _1^{K[3]}-\frac {-2 \nu +4 K[1]+1}{2 K[1]}dK[1]\right ) L_{\frac {1}{2}-\nu }^{2 \nu }(2 K[3])dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
nu = symbols("nu") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 3)) - (x**2 - 2*x)*Derivative(y(x), (x, 2)) - (nu**2 + x**2 - 1/4)*Derivative(y(x), x) + (nu**2 + x**2 - 2*x - 1/4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (4*nu**2*y(x) + 4*x**2*y(x) - 4*x**2*Derivative(y(x), (x, 2)) + 4*x**2*Derivative(y(x), (x, 3)) - 8*x*y(x) + 8*x*Derivative(y(x), (x, 2)) - y(x))/(4*nu**2 + 4*x**2 - 1) cannot be solved by the factorable group method