Internal
problem
ID
[11466]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1499
Date
solved
:
Thursday, March 13, 2025 at 08:53:18 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-(x^2-2*x)*diff(diff(y(x),x),x)-(x^2+nu^2-1/4)*diff(y(x),x)+(x^2-2*x+nu^2-1/4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1/4 + nu^2 - 2*x + x^2)*y[x] - (-1/4 + nu^2 + x^2)*D[y[x],x] - (-2*x + x^2)*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") nu = symbols("nu") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 3)) - (x**2 - 2*x)*Derivative(y(x), (x, 2)) - (nu**2 + x**2 - 1/4)*Derivative(y(x), x) + (nu**2 + x**2 - 2*x - 1/4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*nu**2*y(x) + 4*x**2*y(x) - 4*x**2*Derivative(y(x), (x, 2)) + 4*x**2*Derivative(y(x), (x, 3)) - 8*x*y(x) + 8*x*Derivative(y(x), (x, 2)) - y(x))/(4*nu**2 + 4*x**2 - 1) cannot be solved by the factorable group method