Internal
problem
ID
[11473]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1508
Date
solved
:
Thursday, March 13, 2025 at 08:53:21 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+(-nu^2+1)*x*diff(y(x),x)+(a*x^3+nu^2-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1 + nu^2 + a*x^3)*y[x] + (1 - nu^2)*x*D[y[x],x] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") nu = symbols("nu") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + x*(1 - nu**2)*Derivative(y(x), x) + (a*x**3 + nu**2 - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**3*y(x) + nu**2*y(x) + x**3*Derivative(y(x), (x, 3)) - y(x))/(x*(nu**2 - 1)) cannot be solved by the factorable group method