Internal
problem
ID
[11476]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1511
Date
solved
:
Wednesday, March 05, 2025 at 02:26:30 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+3*x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x)-6*x^3*(x-1)*ln(x)+x^3*(x+8) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*(8 + x) - 6*(-1 + x)*x^3*Log[x] + 2*y[x] - 2*x*D[y[x],x] + 3*x^2*D[y[x],{x,2}] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*x**3*(x - 1)*log(x) + x**3*(x + 8) + x**3*Derivative(y(x), (x, 3)) + 3*x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)