Internal
problem
ID
[11864]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
8,
system
of
first
order
odes
Problem
number
:
1865
Date
solved
:
Monday, January 27, 2025 at 11:43:57 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x \left (t \right )&=a_{1} x \left (t \right )+b_{1} y \left (t \right )+c_{1}\\ \frac {d}{d t}y \left (t \right )&=a_{2} x \left (t \right )+b_{2} y \left (t \right )+c_{2} \end{align*}
Time used: 0.173 (sec). Leaf size: 333
\begin{align*}
x \left (t \right ) &= {\mathrm e}^{\left (\frac {a_{1}}{2}+\frac {b_{2}}{2}+\frac {\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}}{2}\right ) t} c_4 +{\mathrm e}^{\left (\frac {a_{1}}{2}+\frac {b_{2}}{2}-\frac {\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}}{2}\right ) t} c_3 +\frac {b_{1} c_{2} -b_{2} c_{1}}{a_{1} b_{2} -a_{2} b_{1}} \\
y \left (t \right ) &= \frac {-\frac {a_{1} \left ({\mathrm e}^{\frac {\left (a_{1} +b_{2} +\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_4 \left (a_{1} b_{2} -a_{2} b_{1} \right )+{\mathrm e}^{\frac {\left (a_{1} +b_{2} -\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_3 \left (a_{1} b_{2} -a_{2} b_{1} \right )-b_{2} c_{1} +b_{1} c_{2} \right ) \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{a_{1} b_{2} -a_{2} b_{1}}+\frac {\left (a_{1} +b_{2} +\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) {\mathrm e}^{\frac {\left (a_{1} +b_{2} +\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_4 \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{2}+\frac {\left (a_{1} +b_{2} -\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) {\mathrm e}^{\frac {\left (a_{1} +b_{2} -\sqrt {a_{1}^{2}-2 a_{1} b_{2} +4 a_{2} b_{1} +b_{2}^{2}}\right ) t}{2}} c_3 \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{2}-c_{1} \left (2 a_{1} b_{2} -2 a_{2} b_{1} \right )}{\left (2 a_{1} b_{2} -2 a_{2} b_{1} \right ) b_{1}} \\
\end{align*}
Time used: 1.098 (sec). Leaf size: 1684
Too large to display