7.8.12 problem 12

Internal problem ID [226]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.1 (Introduction. Second order linear equations). Problems at page 111
Problem number : 12
Date solved : Tuesday, March 04, 2025 at 11:05:38 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+6*diff(y(x),x)+13*y(x) = 0; 
ic:=y(0) = 2, D(y)(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = {\mathrm e}^{-3 x} \left (3 \sin \left (2 x \right )+2 \cos \left (2 x \right )\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 24
ode=D[y[x],{x,2}]+6*D[y[x],x]+13*y[x] == 0; 
ic={y[0]==2,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x} (3 \sin (2 x)+2 \cos (2 x)) \]
Sympy. Time used: 0.191 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(13*y(x) + 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (3 \sin {\left (2 x \right )} + 2 \cos {\left (2 x \right )}\right ) e^{- 3 x} \]