Internal
problem
ID
[11505]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1541
Date
solved
:
Wednesday, March 05, 2025 at 02:27:07 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+(a*x^2+b*lambda+c)*diff(diff(y(x),x),x)+(a*x^2+beta*lambda+gamma)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(\[Gamma] + \[Beta]*\[Lambda] + a*x^2)*y[x] + (c + b*\[Lambda] + a*x^2)*D[y[x],{x,2}] + Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") c = symbols("c") cg = symbols("cg") y = Function("y") ode = Eq((BETA*cg + Gamma + a*x**2)*y(x) + (a*x**2 + b*cg + c)*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve (BETA*cg + Gamma + a*x**2)*y(x) + (a*x**2 + b*cg + c)*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4))