60.5.19 problem 1556

Internal problem ID [11516]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 4, linear fourth order
Problem number : 1556
Date solved : Wednesday, March 05, 2025 at 02:27:15 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 19
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+8*x*diff(diff(diff(y(x),x),x),x)+12*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} +\frac {c_{2}}{x}+\frac {c_3}{x^{2}}+c_4 x \]
Mathematica. Time used: 0.035 (sec). Leaf size: 27
ode=12*D[y[x],{x,2}] + 8*x*Derivative[3][y][x] + x^2*Derivative[4][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {3 c_2 x+c_1}{6 x^2}+c_4 x+c_3 \]
Sympy. Time used: 0.096 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 4)) + 8*x*Derivative(y(x), (x, 3)) + 12*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x^{2}} + \frac {C_{3}}{x} + C_{4} x \]