Internal
problem
ID
[11524]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1564
Date
solved
:
Thursday, March 13, 2025 at 08:53:37 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^3*diff(diff(diff(y(x),x),x),x)-(4*n^2+3)*x^2*diff(diff(y(x),x),x)+(12*n^2-3)*x*diff(y(x),x)-(4*x^4+12*n^2-3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3 - 12*n^2 - 4*x^4)*y[x] + (-3 + 12*n^2)*x*D[y[x],x] - (3 + 4*n^2)*x^2*D[y[x],{x,2}] + 4*x^3*Derivative[3][y][x] + x^4*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 4*x**3*Derivative(y(x), (x, 3)) - x**2*(4*n**2 + 3)*Derivative(y(x), (x, 2)) + x*(12*n**2 - 3)*Derivative(y(x), x) - (12*n**2 + 4*x**4 - 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*n**2*x**2*Derivative(y(x), (x, 2)) + 12*n**2*y(x) + 4*x**4*y(x) - x**4*Derivative(y(x), (x, 4)) - 4*x**3*Derivative(y(x), (x, 3)) + 3*x**2*Derivative(y(x), (x, 2)) - 3*y(x))/(3*x*(4*n**2 - 1)) cannot be solved by the factorable group method