Internal
problem
ID
[11529]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1569
Date
solved
:
Thursday, March 13, 2025 at 08:53:38 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+(6-4*a)*x^3*diff(diff(diff(y(x),x),x),x)+(4*b^2*c^2*x^(2*c)+6*(a-1)^2-2*c^2*(mu^2+nu^2)+1)*x^2*diff(diff(y(x),x),x)+(4*(3*c-2*a+1)*b^2*c^2*x^(2*c)+(2*a-1)*(2*c^2*(mu^2+nu^2)-2*a*(a-1)-1))*x*diff(y(x),x)+(4*(-c+a)*(a-2*c)*b^2*c^2*x^(2*c)+(c*mu+c*nu+a)*(c*mu+c*nu-a)*(c*mu-c*nu+a)*(c*mu-c*nu-a))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+(6-4*a)*x^3*D[y[x],{x,3}]+(4*b^2*c^2*x^(2*c)+6*(a-1)^2-2*c^2*(\[Mu]^2+\[Nu]^2)+1)*x^2*D[y[x],{x,2}]+(4*(3*c-2*a+1)*b^2*c^2*x^(2*c)+(2*a-1)*(2*c^2*(\[Mu]^2+\[Nu]^2)-2*a*(a-1)-1))*x*D[y[x],x]+(4*(a-c)*(a-2*c)*b^2*c^2*x^(2*c)+(c*\[Mu]+c*\[Nu]+a)*(c*\[Mu]+c*\[Nu]-a)*(c*\[Mu]-c*\[Nu]+a)*(c*\[Mu]-c*\[Nu]-a))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") mu = symbols("mu") nu = symbols("nu") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + x**3*(6 - 4*a)*Derivative(y(x), (x, 3)) + x**2*(4*b**2*c**2*x**(2*c) - 2*c**2*(mu**2 + nu**2) + 6*(a - 1)**2 + 1)*Derivative(y(x), (x, 2)) + x*(b**2*c**2*x**(2*c)*(-8*a + 12*c + 4) + (2*a - 1)*(-2*a*(a - 1) + 2*c**2*(mu**2 + nu**2) - 1))*Derivative(y(x), x) + (b**2*c**2*x**(2*c)*(a - 2*c)*(4*a - 4*c) + (-a + c*mu - c*nu)*(-a + c*mu + c*nu)*(a + c*mu - c*nu)*(a + c*mu + c*nu))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a**4*y(x) - 4*a**2*b**2*c**2*x**(2*c)*y(x) + 2*a**2*c**2*mu**2*y(x) + 2*a**2*c**2*nu**2*y(x) - 6*a**2*x**2*Derivative(y(x), (x, 2)) + 12*a*b**2*c**3*x**(2*c)*y(x) + 4*a*x**3*Derivative(y(x), (x, 3)) + 12*a*x**2*Derivative(y(x), (x, 2)) - 8*b**2*c**4*x**(2*c)*y(x) - 4*b**2*c**2*x**(2*c + 2)*Derivative(y(x), (x, 2)) - c**4*mu**4*y(x) + 2*c**4*mu**2*nu**2*y(x) - c**4*nu**4*y(x) + 2*c**2*mu**2*x**2*Derivative(y(x), (x, 2)) + 2*c**2*nu**2*x**2*Derivative(y(x), (x, 2)) - x**4*Derivative(y(x), (x, 4)) - 6*x**3*Derivative(y(x), (x, 3)) - 7*x**2*Derivative(y(x), (x, 2)))/(x*(-4*a**3 + 6*a**2 - 8*a*b**2*c**2*x**(2*c) + 4*a*c**2*mu**2 + 4*a*c**2*nu**2 - 4*a + 12*b**2*c**3*x**(2*c) + 4*b**2*c**2*x**(2*c) - 2*c**2*mu**2 - 2*c**2*nu**2 + 1)) cannot be solved by the factorable group method