Internal
problem
ID
[11532]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1572
Date
solved
:
Thursday, March 13, 2025 at 08:53:40 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=(x^2-1)^2*diff(diff(diff(diff(y(x),x),x),x),x)+10*x*(x^2-1)*diff(diff(diff(y(x),x),x),x)+(24*x^2-8-2*(mu*(mu+1)+nu*(nu+1))*(x^2-1))*diff(diff(y(x),x),x)-6*x*(mu*(mu+1)+nu*(nu+1)-2)*diff(y(x),x)+((mu*(mu+1)-nu*(nu+1))^2-2*mu*(mu+1)-2*nu*(nu+1))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-2*\[Mu]*(1 + \[Mu]) - 2*\[Nu]*(1 + \[Nu]) + (\[Mu]*(1 + \[Mu]) - \[Nu]*(1 + \[Nu]))^2)*y[x] - 6*(-2 + \[Mu]*(1 +\[Mu]) + \[Nu]*(1 + \[Nu]))*x*D[y[x],x] + (-8 + 24*x^3 - 2*(\[Mu]*(1 + \[Mu]) + \[Nu]*(1 + \[Nu]))*(-1 + x^2))*D[y[x],{x,2}] + 10*x*(-1 + x^2)*Derivative[3][y][x] + (-1 + x^2)^2*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") mu = symbols("mu") nu = symbols("nu") y = Function("y") ode = Eq(10*x*(x**2 - 1)*Derivative(y(x), (x, 3)) - 6*x*(mu*(mu + 1) + nu*(nu + 1) - 2)*Derivative(y(x), x) + (x**2 - 1)**2*Derivative(y(x), (x, 4)) + (24*x**2 - (x**2 - 1)*(2*mu*(mu + 1) + 2*nu*(nu + 1)) - 8)*Derivative(y(x), (x, 2)) + (-2*mu*(mu + 1) - 2*nu*(nu + 1) + (mu*(mu + 1) - nu*(nu + 1))**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (mu**4*y(x) + 2*mu**3*y(x) - 2*mu**2*nu**2*y(x) - 2*mu**2*nu*y(x) - 2*mu**2*x**2*Derivative(y(x), (x, 2)) - mu**2*y(x) + 2*mu**2*Derivative(y(x), (x, 2)) - 2*mu*nu**2*y(x) - 2*mu*nu*y(x) - 2*mu*x**2*Derivative(y(x), (x, 2)) - 2*mu*y(x) + 2*mu*Derivative(y(x), (x, 2)) + nu**4*y(x) + 2*nu**3*y(x) - 2*nu**2*x**2*Derivative(y(x), (x, 2)) - nu**2*y(x) + 2*nu**2*Derivative(y(x), (x, 2)) - 2*nu*x**2*Derivative(y(x), (x, 2)) - 2*nu*y(x) + 2*nu*Derivative(y(x), (x, 2)) + x**4*Derivative(y(x), (x, 4)) + 10*x**3*Derivative(y(x), (x, 3)) + 24*x**2*Derivative(y(x), (x, 2)) - 2*x**2*Derivative(y(x), (x, 4)) - 10*x*Derivative(y(x), (x, 3)) - 8*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)))/(6*x*(mu**2 + mu + nu**2 + nu - 2)) cannot be solved by the factorable group method