7.8.16 problem 16

Internal problem ID [230]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.1 (Introduction. Second order linear equations). Problems at page 111
Problem number : 16
Date solved : Tuesday, March 04, 2025 at 11:05:48 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=2\\ y^{\prime }\left (1\right )&=3 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 0; 
ic:=y(1) = 2, D(y)(1) = 3; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 3 \sin \left (\ln \left (x \right )\right )+2 \cos \left (\ln \left (x \right )\right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+y[x] == 0; 
ic={y[1]==2,Derivative[1][y][1] ==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 3 \sin (\log (x))+2 \cos (\log (x)) \]
Sympy. Time used: 0.175 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x),0) 
ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 \sin {\left (\log {\left (x \right )} \right )} + 2 \cos {\left (\log {\left (x \right )} \right )} \]