Internal
problem
ID
[11937]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
9,
system
of
higher
order
odes
Problem
number
:
1939
Date
solved
:
Monday, January 27, 2025 at 11:47:27 PM
CAS
classification
:
system_of_ODEs
✗ Solution by Maple
dsolve([diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= a,diff(x__4(t),t)-(1-lambda)*a*x__5(t)= -m*sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-lambda)*a*x__4(t)= m*sin(x__2(t))*sin(x__3(t))],singsol=all)
✗ Solution by Mathematica
Time used: 0.000 (sec). Leaf size: 0
DSolve[{D[ x1[t],t]*Sin[x2[t]]==x4[t]*Sin[x3[t]]+x5[t]*Cos[x3[t]],D[ x2[t],t]==x4[t]*Cos[x3[t]]-x5[t]*Sin[x3[t]],D[ x3[t],t]+D[ x1[t],t]*Cos[x2[t]]== a,D[ x4[t],t]-(1-\[Lambda])*a*x5[t]== -m*Sin[x2[t]]*Cos[x3[t]],D[ x5[t],t]+(1-\[Lambda])*a*x4[t]== m*Sin[x2[t]]*Sin[x3[t]]},{x1[t],x2[t],x3[t],x4[t],x5[t]},t,IncludeSingularSolutions -> True]
Not solved