61.1.2 problem 1.1.2

Internal problem ID [12002]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, First-Order differential equations
Problem number : 1.1.2
Date solved : Monday, January 27, 2025 at 11:48:01 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=f \left (y\right ) \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 17

dsolve(diff(y(x),x)=f(y(x)),y(x), singsol=all)
 
\[ x -\int _{}^{y}\frac {1}{f \left (\textit {\_a} \right )}d \textit {\_a} +c_{1} = 0 \]

Solution by Mathematica

Time used: 0.231 (sec). Leaf size: 33

DSolve[D[y[x],x]==f[y[x]],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{f(K[1])}dK[1]\&\right ][x+c_1] \\ y(x)\to f^{(-1)}(0) \\ \end{align*}