61.2.4 problem 4

Internal problem ID [12010]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 4
Date solved : Monday, January 27, 2025 at 11:48:24 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=a y^{2}+b \,x^{n} \end{align*}

Solution by Maple

Time used: 0.017 (sec). Leaf size: 207

dsolve(diff(y(x),x)=a*y(x)^2+b*x^n,y(x), singsol=all)
 
\[ y = \frac {\sqrt {a b}\, x^{\frac {n}{2}+1} \operatorname {BesselJ}\left (\frac {n +3}{n +2}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}+1}}{n +2}\right ) c_{1} +\operatorname {BesselY}\left (\frac {n +3}{n +2}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}+1}}{n +2}\right ) \sqrt {a b}\, x^{\frac {n}{2}+1}-c_{1} \operatorname {BesselJ}\left (\frac {1}{n +2}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}+1}}{n +2}\right )-\operatorname {BesselY}\left (\frac {1}{n +2}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}+1}}{n +2}\right )}{x a \left (c_{1} \operatorname {BesselJ}\left (\frac {1}{n +2}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}+1}}{n +2}\right )+\operatorname {BesselY}\left (\frac {1}{n +2}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}+1}}{n +2}\right )\right )} \]

Solution by Mathematica

Time used: 0.416 (sec). Leaf size: 752

DSolve[D[y[x],x]==a*y[x]^2+b*x^n,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {\sqrt {a} \sqrt {b} x^{\frac {n}{2}+1} \operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {1}{n+2}-1,\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )-\sqrt {a} \sqrt {b} x^{\frac {n}{2}+1} \operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (1+\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )+\operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )-\sqrt {a} \sqrt {b} c_1 x^{\frac {n}{2}+1} \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )+\sqrt {a} \sqrt {b} c_1 x^{\frac {n}{2}+1} \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )+c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )}{2 a x \left (\operatorname {Gamma}\left (1+\frac {1}{n+2}\right ) \operatorname {BesselJ}\left (\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )+c_1 \operatorname {Gamma}\left (\frac {n+1}{n+2}\right ) \operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )\right )} \\ y(x)\to \frac {\frac {\sqrt {a} \sqrt {b} x^{n/2} \left (\operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )-\operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )\right )}{\operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )}-\frac {1}{x}}{2 a} \\ y(x)\to \frac {\frac {\sqrt {a} \sqrt {b} x^{n/2} \left (\operatorname {BesselJ}\left (\frac {n+1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )-\operatorname {BesselJ}\left (-\frac {n+3}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )\right )}{\operatorname {BesselJ}\left (-\frac {1}{n+2},\frac {2 \sqrt {a} \sqrt {b} x^{\frac {n}{2}+1}}{n+2}\right )}-\frac {1}{x}}{2 a} \\ \end{align*}