61.2.15 problem 15
Internal
problem
ID
[12021]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
15
Date
solved
:
Monday, January 27, 2025 at 11:51:04 PM
CAS
classification
:
[_rational, _Riccati]
\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \,x^{n}+c \end{align*}
✓ Solution by Maple
Time used: 0.003 (sec). Leaf size: 220
dsolve(x^2*diff(y(x),x)=a*x^2*y(x)^2+b*x^n+c,y(x), singsol=all)
\[
y = \frac {2 \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a c +1}}{n}+1, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a c +1}}{n}+1, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}}}{n}\right )\right ) \sqrt {a b}\, x^{\frac {n}{2}}-\left (\sqrt {-4 a c +1}+1\right ) \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a c +1}}{n}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a c +1}}{n}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}}}{n}\right )\right )}{2 x a \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a c +1}}{n}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a c +1}}{n}, \frac {2 \sqrt {a b}\, x^{\frac {n}{2}}}{n}\right )\right )}
\]
✓ Solution by Mathematica
Time used: 0.981 (sec). Leaf size: 1779
DSolve[x^2*D[y[x],x]==a*x^2*y[x]^2+b*x^n+c,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {-a^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}} n^{\frac {2 \sqrt {(1-4 a c) n^2}}{n^2}+1} \left (x^n\right )^{\frac {i \sqrt {4 a c-1}}{n}+1} \operatorname {BesselJ}\left (\frac {\sqrt {(1-4 a c) n^2}}{n^2}-1,\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) \operatorname {Gamma}\left (\frac {n+\sqrt {1-4 a c}}{n}\right ) b^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}}+a^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}} n^{\frac {2 \sqrt {(1-4 a c) n^2}}{n^2}+1} \left (x^n\right )^{\frac {i \sqrt {4 a c-1}}{n}+1} \operatorname {BesselJ}\left (\frac {\sqrt {(1-4 a c) n^2}}{n^2}+1,\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) \operatorname {Gamma}\left (\frac {n+\sqrt {1-4 a c}}{n}\right ) b^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}}-a^{\frac {i \sqrt {4 a c-1}}{n}} n^{\frac {2 \sqrt {(1-4 a c) n^2}}{n^2}+1} \left (x^n\right )^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}} \operatorname {BesselJ}\left (\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) \operatorname {Gamma}\left (\frac {n+\sqrt {1-4 a c}}{n}\right ) b^{\frac {i \sqrt {4 a c-1}}{n}}-i a^{\frac {i \sqrt {4 a c-1}}{n}} \sqrt {4 a c-1} n^{\frac {2 \sqrt {(1-4 a c) n^2}}{n^2}+1} \left (x^n\right )^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}} \operatorname {BesselJ}\left (\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) \operatorname {Gamma}\left (\frac {n+\sqrt {1-4 a c}}{n}\right ) b^{\frac {i \sqrt {4 a c-1}}{n}}+a^{\frac {i \sqrt {4 a c-1}}{n}} n^{\frac {2 \sqrt {(1-4 a c) n^2}}{n^2}} \sqrt {(1-4 a c) n^2} \left (x^n\right )^{\frac {i \sqrt {4 a c-1}}{n}+\frac {1}{2}} \operatorname {BesselJ}\left (\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) \operatorname {Gamma}\left (\frac {n+\sqrt {1-4 a c}}{n}\right ) b^{\frac {i \sqrt {4 a c-1}}{n}}-a^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}} n^{\frac {2 i \sqrt {4 a c-1}}{n}} \left (-i \sqrt {4 a c-1} n+n+\sqrt {(1-4 a c) n^2}\right ) \left (x^n\right )^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+\frac {1}{2}} \operatorname {BesselJ}\left (-\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) c_1 \operatorname {Gamma}\left (1-\frac {\sqrt {1-4 a c}}{n}\right ) b^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}}-a^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+\frac {1}{2}} n^{\frac {2 i \sqrt {4 a c-1}}{n}+1} \left (x^n\right )^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+1} \operatorname {BesselJ}\left (-\frac {\sqrt {(1-4 a c) n^2}}{n^2}-1,\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) c_1 \operatorname {Gamma}\left (1-\frac {\sqrt {1-4 a c}}{n}\right ) b^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+\frac {1}{2}}+a^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+\frac {1}{2}} n^{\frac {2 i \sqrt {4 a c-1}}{n}+1} \left (x^n\right )^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+1} \operatorname {BesselJ}\left (1-\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) c_1 \operatorname {Gamma}\left (1-\frac {\sqrt {1-4 a c}}{n}\right ) b^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}+\frac {1}{2}}}{2 a n x \sqrt {x^n} \left (a^{\frac {i \sqrt {4 a c-1}}{n}} b^{\frac {i \sqrt {4 a c-1}}{n}} n^{\frac {2 \sqrt {(1-4 a c) n^2}}{n^2}} \operatorname {BesselJ}\left (\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) \operatorname {Gamma}\left (\frac {n+\sqrt {1-4 a c}}{n}\right ) \left (x^n\right )^{\frac {i \sqrt {4 a c-1}}{n}}+a^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}} b^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}} n^{\frac {2 i \sqrt {4 a c-1}}{n}} \operatorname {BesselJ}\left (-\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right ) c_1 \operatorname {Gamma}\left (1-\frac {\sqrt {1-4 a c}}{n}\right ) \left (x^n\right )^{\frac {\sqrt {(1-4 a c) n^2}}{n^2}}\right )} \\
y(x)\to \frac {\frac {\sqrt {a} \sqrt {b} \sqrt {x^n} \left (\operatorname {BesselJ}\left (1-\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right )-\operatorname {BesselJ}\left (-\frac {\sqrt {(1-4 a c) n^2}}{n^2}-1,\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right )\right )}{\operatorname {BesselJ}\left (-\frac {\sqrt {(1-4 a c) n^2}}{n^2},\frac {2 \sqrt {a} \sqrt {b} \sqrt {x^n}}{n}\right )}-\frac {\sqrt {n^2 (1-4 a c)}}{n}+i \sqrt {4 a c-1}-1}{2 a x} \\
\end{align*}