60.7.44 problem 1646 (6.56)

Internal problem ID [11594]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1646 (6.56)
Date solved : Wednesday, March 05, 2025 at 02:34:04 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }+a y \left ({y^{\prime }}^{2}+1\right )^{2}&=0 \end{align*}

Maple. Time used: 0.040 (sec). Leaf size: 96
ode:=diff(diff(y(x),x),x)+a*y(x)*(1+diff(y(x),x)^2)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} a \left (\int _{}^{y}\frac {\textit {\_a}^{2}+2 c_{1}}{\sqrt {-\left (\textit {\_a}^{2}+2 c_{1} \right ) a \left (-1+a \left (\textit {\_a}^{2}+2 c_{1} \right )\right )}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ -a \left (\int _{}^{y}\frac {\textit {\_a}^{2}+2 c_{1}}{\sqrt {-\left (\textit {\_a}^{2}+2 c_{1} \right ) a \left (-1+a \left (\textit {\_a}^{2}+2 c_{1} \right )\right )}}d \textit {\_a} \right )-x -c_{2} &= 0 \\ \end{align*}
Mathematica. Time used: 15.352 (sec). Leaf size: 816
ode=a*y[x]*(1 + D[y[x],x]^2)^2 + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*(Derivative(y(x), x)**2 + 1)**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-1 + sqrt(-a*y(x)*Derivative(y(x), (x, 2)))/(a*y(x))) + Derivative(y(x), x) cannot be solved by the factorable group method