61.2.42 problem 42

Internal problem ID [12048]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 42
Date solved : Monday, January 27, 2025 at 11:53:32 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }&=a \,x^{n} y^{2}+b y+c \,x^{m} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 166

dsolve(x*diff(y(x),x)=a*x^(n)*y(x)^2+b*y(x)+c*x^(m),y(x), singsol=all)
 
\[ y = \frac {x^{-\frac {n}{2}+\frac {m}{2}} \sqrt {a c}\, \left (\operatorname {BesselY}\left (\frac {-b +m}{m +n}, \frac {2 \sqrt {a c}\, x^{\frac {m}{2}+\frac {n}{2}}}{m +n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {-b +m}{m +n}, \frac {2 \sqrt {a c}\, x^{\frac {m}{2}+\frac {n}{2}}}{m +n}\right )\right )}{a \left (\operatorname {BesselY}\left (\frac {-b -n}{m +n}, \frac {2 \sqrt {a c}\, x^{\frac {m}{2}+\frac {n}{2}}}{m +n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {-b -n}{m +n}, \frac {2 \sqrt {a c}\, x^{\frac {m}{2}+\frac {n}{2}}}{m +n}\right )\right )} \]

Solution by Mathematica

Time used: 0.769 (sec). Leaf size: 1578

DSolve[x*D[y[x],x]==a*x^(n)*y[x]^2+b*y[x]+c*x^(m),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x^{-n} \left (\sqrt {a} \sqrt {c} (m+n) x^{m+n} \operatorname {BesselJ}\left (\frac {m-b}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) c_1 \operatorname {Gamma}\left (\frac {m-b}{m+n}\right ) \left ((m+n)^2\right )^{\frac {b+n}{m+n}}-\sqrt {a} \sqrt {c} m x^{m+n} \operatorname {BesselJ}\left (-\frac {b+m+2 n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) c_1 \operatorname {Gamma}\left (\frac {m-b}{m+n}\right ) \left ((m+n)^2\right )^{\frac {b+n}{m+n}}-\sqrt {a} \sqrt {c} n x^{m+n} \operatorname {BesselJ}\left (-\frac {b+m+2 n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) c_1 \operatorname {Gamma}\left (\frac {m-b}{m+n}\right ) \left ((m+n)^2\right )^{\frac {b+n}{m+n}}-(b+n) \sqrt {x^{m+n}} \operatorname {BesselJ}\left (-\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) c_1 \operatorname {Gamma}\left (\frac {m-b}{m+n}\right ) \left ((m+n)^2\right )^{\frac {2 b+m+3 n}{2 (m+n)}}-b (m+n)^{\frac {2 (b+n)}{m+n}} \sqrt {x^{m+n}} \operatorname {BesselJ}\left (\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right ) \sqrt {(m+n)^2}-n (m+n)^{\frac {2 (b+n)}{m+n}} \sqrt {x^{m+n}} \operatorname {BesselJ}\left (\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right ) \sqrt {(m+n)^2}-\sqrt {a} \sqrt {c} m (m+n)^{\frac {2 (b+n)}{m+n}} x^{m+n} \operatorname {BesselJ}\left (\frac {b-m}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right )-\sqrt {a} \sqrt {c} n (m+n)^{\frac {2 (b+n)}{m+n}} x^{m+n} \operatorname {BesselJ}\left (\frac {b-m}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right )+\sqrt {a} \sqrt {c} m (m+n)^{\frac {2 (b+n)}{m+n}} x^{m+n} \operatorname {BesselJ}\left (\frac {b+n}{m+n}+1,\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right )+\sqrt {a} \sqrt {c} n (m+n)^{\frac {2 (b+n)}{m+n}} x^{m+n} \operatorname {BesselJ}\left (\frac {b+n}{m+n}+1,\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right )\right )}{2 a \sqrt {(m+n)^2} \sqrt {x^{m+n}} \left (\operatorname {BesselJ}\left (-\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) c_1 \operatorname {Gamma}\left (\frac {m-b}{m+n}\right ) \left ((m+n)^2\right )^{\frac {b+n}{m+n}}+(m+n)^{\frac {2 (b+n)}{m+n}} \operatorname {BesselJ}\left (\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right ) \operatorname {Gamma}\left (\frac {b+m+2 n}{m+n}\right )\right )} \\ y(x)\to \frac {x^{-n} \left (\sqrt {a} \sqrt {c} (m+n) \sqrt {x^{m+n}} \operatorname {BesselJ}\left (\frac {m-b}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )-(b+n) \sqrt {(m+n)^2} \operatorname {BesselJ}\left (-\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )-\sqrt {a} \sqrt {c} (m+n) \sqrt {x^{m+n}} \operatorname {BesselJ}\left (-\frac {b+m+2 n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )\right )}{2 a \sqrt {(m+n)^2} \operatorname {BesselJ}\left (-\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )} \\ y(x)\to \frac {x^{-n} \left (\sqrt {a} \sqrt {c} (m+n) \sqrt {x^{m+n}} \operatorname {BesselJ}\left (\frac {m-b}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )-(b+n) \sqrt {(m+n)^2} \operatorname {BesselJ}\left (-\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )-\sqrt {a} \sqrt {c} (m+n) \sqrt {x^{m+n}} \operatorname {BesselJ}\left (-\frac {b+m+2 n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )\right )}{2 a \sqrt {(m+n)^2} \operatorname {BesselJ}\left (-\frac {b+n}{m+n},\frac {2 \sqrt {a} \sqrt {c} \sqrt {x^{m+n}}}{\sqrt {(m+n)^2}}\right )} \\ \end{align*}