61.2.51 problem 51

Internal problem ID [12057]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 51
Date solved : Monday, January 27, 2025 at 11:55:08 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b x y+c \,x^{n}+s \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 263

dsolve(x^2*diff(y(x),x)=a*x^2*y(x)^2+b*x*y(x)+c*x^n+s,y(x), singsol=all)
 
\[ y = \frac {2 \sqrt {a c}\, \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a s +b^{2}+2 b +1}}{n}+1, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a s +b^{2}+2 b +1}}{n}+1, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right ) x^{\frac {n}{2}}-\left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a s +b^{2}+2 b +1}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a s +b^{2}+2 b +1}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right ) \left (\sqrt {-4 a s +b^{2}+2 b +1}+b +1\right )}{2 x a \left (\operatorname {BesselY}\left (\frac {\sqrt {-4 a s +b^{2}+2 b +1}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right ) c_{1} +\operatorname {BesselJ}\left (\frac {\sqrt {-4 a s +b^{2}+2 b +1}}{n}, \frac {2 \sqrt {a c}\, x^{\frac {n}{2}}}{n}\right )\right )} \]

Solution by Mathematica

Time used: 1.475 (sec). Leaf size: 2281

DSolve[x^2*D[y[x],x]==a*x^2*y[x]^2+b*x*y[x]+c*x^n+s,y[x],x,IncludeSingularSolutions -> True]
 

Too large to display