Internal
problem
ID
[11619]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1678
(book
6.87)
Date
solved
:
Wednesday, March 05, 2025 at 02:35:04 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+a*y(x)*diff(y(x),x)^2+b*x = 0; dsolve(ode,y(x), singsol=all);
ode=b*x + a*y[x]*D[y[x],x]^2 + x^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*y(x)*Derivative(y(x), x)**2 + b*x + x**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-x*(b + x*Derivative(y(x), (x, 2)))/(a*y(x))) + Derivative(y(x), x) cannot be solved by the factorable group method