Internal
problem
ID
[620]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
30
and
39
Date
solved
:
Monday, January 27, 2025 at 02:56:26 AM
CAS
classification
:
system_of_ODEs
With initial conditions
✓ Solution by Maple
Time used: 0.063 (sec). Leaf size: 48
dsolve([diff(x__1(t),t) = x__1(t)-4*x__2(t)-2*x__4(t), diff(x__2(t),t) = x__2(t), diff(x__3(t),t) = 6*x__1(t)-12*x__2(t)-x__3(t)-6*x__4(t), diff(x__4(t),t) = -4*x__2(t)-x__4(t), x__1(0) = 1, x__2(0) = 1, x__3(0) = 1, x__4(0) = 1], singsol=all)
✓ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 56
DSolve[{D[x1[t],t]==x1[t]-4*x2[t]-2*x4[t],D[x2[t],t]==x2[t],D[x3[t],t]==6*x1[t]-12*x2[t]-x3[t]-6*x4[t],D[x4[t],t]==-4*x2[t]-x4[t]},{x1[0]==1,x2[0]==1,x3[0]==1,x4[0]==1},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]