7.8.25 problem 38

Internal problem ID [239]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.1 (Introduction. Second order linear equations). Problems at page 111
Problem number : 38
Date solved : Tuesday, March 04, 2025 at 11:06:05 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=4*diff(diff(y(x),x),x)+8*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-\frac {x}{2}}+c_2 \,{\mathrm e}^{-\frac {3 x}{2}} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 22
ode=4*D[y[x],{x,2}]+8*D[y[x],x]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x/2} \left (c_2 e^x+c_1\right ) \]
Sympy. Time used: 0.173 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) + 8*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{- x}\right ) e^{- \frac {x}{2}} \]