60.7.84 problem 1695 (book 6.104)

Internal problem ID [11634]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1695 (book 6.104)
Date solved : Wednesday, March 05, 2025 at 02:35:26 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime } y-a&=0 \end{align*}

Maple. Time used: 0.172 (sec). Leaf size: 53
ode:=diff(diff(y(x),x),x)*y(x)-a = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {1}{\sqrt {2 a \ln \left (\textit {\_a} \right )-c_{1}}}d \textit {\_a} -x -c_{2} &= 0 \\ -\int _{}^{y}\frac {1}{\sqrt {2 a \ln \left (\textit {\_a} \right )-c_{1}}}d \textit {\_a} -x -c_{2} &= 0 \\ \end{align*}
Mathematica. Time used: 60.181 (sec). Leaf size: 111
ode=-a + y[x]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \exp \left (-\frac {2 a \text {erf}^{-1}\left (-i \sqrt {\frac {2}{\pi }} \sqrt {a e^{\frac {c_1}{a}} (x+c_2){}^2}\right ){}^2+c_1}{2 a}\right ) \\ y(x)\to \exp \left (-\frac {2 a \text {erf}^{-1}\left (i \sqrt {\frac {2}{\pi }} \sqrt {a e^{\frac {c_1}{a}} (x+c_2){}^2}\right ){}^2+c_1}{2 a}\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a + y(x)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out