61.3.2 problem 2

Internal problem ID [12086]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3. Equations Containing Exponential Functions
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 12:21:32 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 63

dsolve(diff(y(x),x)=y(x)^2+a*lambda*exp(lambda*x)-a^2*exp(2*lambda*x),y(x), singsol=all)
 
\[ y = \frac {\operatorname {Ei}_{1}\left (-\frac {2 a \,{\mathrm e}^{\lambda x}}{\lambda }\right ) {\mathrm e}^{\lambda x} c_{1} a +{\mathrm e}^{\frac {2 a \,{\mathrm e}^{\lambda x}}{\lambda }} c_{1} \lambda +{\mathrm e}^{\lambda x} a}{\operatorname {Ei}_{1}\left (-\frac {2 a \,{\mathrm e}^{\lambda x}}{\lambda }\right ) c_{1} +1} \]

Solution by Mathematica

Time used: 1.985 (sec). Leaf size: 107

DSolve[D[y[x],x]==y[x]^2+a*\[Lambda]*Exp[\[Lambda]*x]-a^2*Exp[2*\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {a e^{\lambda x} \int _1^{e^{x \lambda }}\frac {e^{\frac {2 a K[1]}{\lambda }}}{K[1]}dK[1]+\lambda \left (-e^{\frac {2 a e^{\lambda x}}{\lambda }}\right )+a c_1 e^{\lambda x}}{\int _1^{e^{x \lambda }}\frac {e^{\frac {2 a K[1]}{\lambda }}}{K[1]}dK[1]+c_1} \\ y(x)\to a e^{\lambda x} \\ \end{align*}